
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Implementation of Bilinear Interpolation in Fast

Approximation Anti-Aliasing (FXAA) for Basic

Raster Graphics

Nicholas Andhika Lucas, 135230141,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523014@std.stei.itb.ac.id, 2realandhikalucas@gmail.com

Abstract—Fast Approximation Anti-Aliasing (FXAA) is a

popular graphic setting choice for many people, notably in the

gaming industry, as it provides a low cost and moderate

quality of anti-aliasing. This study explores the

implementation of bilinear interpolation in an FXAA

algorithm to reduce aliasing in raster graphics. The algorithm

is created using Python libraries, and the experiment tested

its effectiveness using sample images ranging from simple

shapes to complex spheres. The experiment demonstrated the

bilinear interpolation capability in reducing the aliasing

effects on the sample images in a particularly quick manner.

Other findings include a limitation in contrast detection and

blending capabilities compared to other algorithms.

Keywords—bilinear interpolation, fast approximation anti-

aliasing (FXAA), raster graphics

I. INTRODUCTION

In this current age of advanced digital technology, many

video games, namely triple-A games pursue high-end

visuals that rely on precise visual rendering. This is done

in hopes of satisfying a person’s need for realistic,

immersive, and high-quality graphics. One of the leading

factors in achieving this goal is by creating a smooth and

unjagged visual, thereby reducing a “blocky and pixelated”

graphic. This is done by utilizing anti-aliasing, a method to

smoothen edges of diagonal lines or curves from images.

Multiple anti-aliasing techniques exist and are chosen by

users depending on the quality and the processing time

demanded by the user. Fast Approximate Anti-Aliasing

(FXAA) stands out as one of the most popular choices for

image rendering, namely in video games, because of the

efficiency of the computation while still providing a high-

quality end-result. FXAA typically uses a type of bilinear

interpolation to process and reduce the aliasing effect in

images (blending). Although uncommon, other

interpolation methods may be used, such as linear and

bicubic interpolation.

This study aims to implement the FXAA technique on a

simple raster image using Python. Furthermore, this paper

also experiments with the implementation of a weighted

interpolation method in the FXAA algorithm. In doing so,

this study hopes to analyze and evaluate the impact of the

weighted interpolation method integrated into FXAA,

providing insights into their suitability for different

contexts.

II. BASIC THEORY

A. Raster Graphics

Raster graphics are images that are made of pixels

containing a specific detail of color, commonly displayed

in RGB. Pixels – the smallest addressable unit in an image

– contain a specific value of color, that when combined

creates a complete image, similar to mosaic. Raster

graphics are very commonly found every day, since most

mediums of graphics are based on pixels. For example,

pictures taken with our phone, in photographs, and on

websites.

Computer images generally store images in raster graphic

format such as JPEG or PNG. Although versatile, raster

graphics may appear “blocky” or “pixelated” when they are

magnified. This is due to how raster graphics are stored,

since they are resolution dependent – since it is based on

pixel units – [1].

Image 1. Raster graphics. Source: printcnx.com.

B. Fast Approximation Anti-Aliasing (FXAA)

Anti-aliasing in context of digital image is any number

of algorithms or techniques developed to reduce the

jagged/aliased appearance of pixel-based images on a

screen. First introduced in 1972, anti-aliasing has become

a staple in determining graphic quality. It is essential in

today’s age, where most graphics used digitally are raster

graphics, images composed of pixels. The problem arises

when defining an image in pixels. An image is bound to a

certain resolution, therefore limiting the number of pixels

to represent a single point. In lower resolutions, this

mailto:113523014@std.stei.itb.ac.id
mailto:2realandhikalucas@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

limitation becomes more evident and may create a “blocky

and pixelated” graphic, instead of a smooth appearance.

This is where anti-aliasing comes into play and reduces the

effect of this jaggedness.

Fig 2. Example of limitations of representing a curved line in

pixels. Source: vokigames.com

The principle of anti-aliasing is creating additional

shades of pixels to create a smoother appearance on the

borders of the image. The shades of pixels along the edges

take reference from neighboring pixels to create a gradient

that reduces the striking transition of colors which would

create a jagged appearance. This is essential in representing

curved lines in raster images [2].

Fig 3. Anti-Aliasing. Source: vokigames.com

An anti-aliasing technique often used is Fast

Approximation Anti-Aliasing (FXAA). This technique

uses a high contrast filter to find points of images that are

likely to have jagged edges, based on its contrast with

neighboring pixels. Then, it blends the edges by sampling

colors along the edges of a curve and averaging them. The

benefits from FXAA come from its performance

advantage, compared to other anti-aliasing methods, as it

essentially blurs the edges of an image instead of

calculating the colors and geometry directly. Although

strong in performance, its downsides come in the form of

lower to moderate image quality result [2].

According to Flick (2020), the algorithm of FXAA is as

follows: First, the selected image is inputted. Then, the

luminance data is acquired to find the contrast in color.

This is done by approximating it using a green channel

from the image. However, this is not always the best option

since it is an approximation. Another option which is better

is to directly calculate the luminance from the RGB value

of the image or retrieve the data from the alpha channel.

Next, the algorithm uses a high pass filter to compare the

luminance of a pixel and its neighboring pixels as a

threshold to determine if a pixel is contrasting enough.

Lower contrasting pixels will be excluded from the FXAA

algorithm. The threshold chosen can be adjusted

accordingly to get the result desired. Then, the contrast

between adjacent pixels is used to find the edge of a shape

or image. The blending direction of a pixel will follow,

perpendicular to the edge direction detected. Following

this, the blending factor of a high contrasting pixel is

analyzed from the luminance data of a pixel and its

neighboring pixels, essentially in a grid. This is where

different methods of interpolation come into play to

determine the shade of the pixel to be added for blending.

Finally, the algorithm detects the length and direction of an

edge when it ends to determine its actual direction. The

result produced will be a blending or smoothening effect

along the edge of contrasting pixels [3].

C. Bilinear Interpolation

Bilinear interpolation is a type of interpolation that is

extended from linear interpolation into 2D space. The

difference lies in the approximation of a value by sampling

four other coordinates or points of value. In simple terms,

it can approximate a value that is located within the

rectangular shape created by the 4 points of reference. It is

also able to be done in one direction, then done in the other

direction (e.g. x then y) [4].

Fig 4. 1D and 2D Interpolation. Source: wikimedia.org

The equation is as follows. Suppose you have a

rectangular grid made from 4 points in a 2D space, which

includes (x1, y1), (x2, y1), (x1, y2), (x2, y2). To calculate the

value at point (x, y) that lies within x1 ≤ x ≤ x2and y1 ≤ y ≤

y2, the following formula is given:

𝑓(𝑥, 𝑦) =
(𝑥2−𝑥)(𝑦2−𝑦)

(𝑥2−𝑥1)(𝑦2−𝑦1)
𝑄11 +

(𝑥−𝑥1)(𝑦2−𝑦)

(𝑥2−𝑥1)(𝑦2−𝑦1)
𝑄21 +

(𝑥2−𝑥)(𝑦−𝑦1)

(𝑥2−𝑥1)(𝑦2−𝑦1)
𝑄12 +

(𝑥−𝑥1)(𝑦−𝑦1)

(𝑥2−𝑥1)(𝑦2−𝑦1)
𝑄22 (1)

where:

𝑓(𝑥1, 𝑦1) = 𝑄11

𝑓(𝑥2, 𝑦1) = 𝑄21

𝑓(𝑥1, 𝑦2) = 𝑄12

𝑓(𝑥2, 𝑦2) = 𝑄22

The figure below illustrates how bilinear interpolation

approximates a value. In digital image processing, bilinear

interpolation first considers the closest 2x2 grid of known

pixel values that neighbors a pixel. Then, it takes the

weighted average of the 4 pixels to calculate its final

interpolated value. In the case where all known pixel

distances are equal, the interpolation equation can be

reduced to simply dividing their sum by the amount of

known pixel points [5]. This is essential in the application

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

of anti-aliasing.

Fig 5. Bilinear Interpolation in Digital Image Processing.

Source: cambridgeincolour.com

III. EXPERIMENT AND ANALYSIS

This experiment will utilize Python to model a simple

Fast Approximation Anti-Aliasing (FXAA) algorithm to

demonstrate the impact of bilinear interpolation in creating

a smoother anti-aliasing effect. Several Python modules

will be imported to assist the experiment, including cv2,

numpy, and matplotlib. The algorithm used in the

experiment will be adapted from Flick’s guide – see

reference [3] – but will be interpreted as his guide is made

for implementation in OpenGL, whilst this experiment

aims to only show the basic implementation using Python.

In reference to Flick, the main steps for recreating the

FXAA algorithm is as follows:

1. Input a sample raster image.

2. Acquire the luminance data using RGB values.

3. Create a high contrast filter using the luminance data

detected.

4. Detect parts that are categorized as edges based on

its contrast value. Ignore lower contrasting pixels.

5. Apply the bilinear interpolation for blending the

pixels on the edges.

Fig 6. Experiment Flow. Source: Author (made in draw.io)

A. Sample Images

The samples used in the experiment utilizes Python’s

numpy library to generate a variety of images, ranging from

a basic diagonal line to spirals and gradients. The images

used are placed in a separate file called sample.py, while

the main program, fxaa.py calls the generated images from

the sample file. The samples are used to test the ability of

the bilinear interpolation in reducing the effects of aliasing

or jaggedness. Samples used have a resolution between

100x100 to 500x500 pixels.

B. Luminance Data Acquisition

def get_luminance(image):

 return 0.2126 * image[:, :, 2] + 0.7152 *

image[:, :, 1] + 0.0722 * image[:, :, 0]

In this function, the RGB image is converted to grayscale

so the image can be processed based on its luminance

value.

C. FXAA Algorithm

Ensuring the image processed is in float32 format

image = image.astype(np.float32) / 255.0

Contrast calculation

 contrast = np.zeros_like(luminance,

dtype=np.float32)

 for y in range(1, luminance.shape[0] - 1):

 for x in range(1, luminance.shape[1] - 1):

 m = luminance[y, x] # Middle pixel

 n = luminance[y - 1, x] # North neighbor

 s = luminance[y + 1, x] # South neighbor

 e = luminance[y, x + 1] # East neighbor

 w = luminance[y, x - 1] # West neighbor

 highest = max(m, n, s, e, w)

 lowest = min(m, n, s, e, w)

 contrast[y, x] = highest – lowest

Fig 7. Contrast Calculation Illustration. Source:

catlikecoding.com

In this function, FXAA uses the middle pixel and its

direct horizontal and vertical neighbors to calculate the

contrast. Compass directions are used to easily refer to the

neighboring data. These 5 pixels are sampled to then be

processed. The local contrast calculated between these

pixels are the difference between the highest and the lowest

luminance value. This local contrast value becomes the

threshold for low and high contrast pixels. Therefore, this

becomes a simple high pass filter.

Applying contrast threshold to the filter

 edge_threshold = 0.1

 edges = contrast > edge_threshold

A minimum threshold is set to differentiate which pixels

should be processed using FXAA. In this experiment, the

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

value 0,1 is set as the default threshold.

Applying bilinear interpolation

for y in range(1, image.shape[0] - 1):

 for x in range(1, image.shape[1] - 1):

 if edges[y, x]:

 # Sample neighboring pixels

 north = image[y - 1, x]

 south = image[y + 1, x]

 west = image[y, x - 1]

 east = image[y, x + 1]

 northwest = image[y - 1, x - 1]

 northeast = image[y - 1, x + 1]

 southwest = image[y + 1, x - 1]

 southeast = image[y + 1, x + 1]

 # Compute total weighted average

 local_avg = (

 2 * north + 2 * south + 2 * west

+ 2 * east +

 northwest + northeast + southwest

+ southeast

) / 12.0

 # Blend original and local average

 output[y, x] = np.clip(local_avg,

0.0, 1.0)

 return (output * 255).astype(np.uint8)

When a pixel passes the high contrast filter, it is then

processed in the FXAA algorithm which implements the

bilinear interpolation method. It is similar to the previous

calculation to determine the local contrast, using the

NEWS cross (neighboring pixels on horizontal and vertical

ends). But, to sufficiently represent the neighborhood and

achieve a more accurate result, the other four diagonal

neighboring pixels are also counted in the calculation,

described in the figure below.

Fig 8 and 9. Blending Calculation Illustration. Source:

catlikecoding.com

Pixels located at the northwest, northeast, southwest, and

southeast of the middle pixel are accounted. But, diagonal

neighbors are spatially further away from the middle pixel

than that of the horizontal and vertical neighbors. This is

why in Flick’s variation of FXAA algorithm; weights are

applied to show the important of the corresponding

neighboring pixels. NESW neighbors have twice the

amount of weight over the diagonal neighbors. The

equation then becomes as such:

P =
2⋅𝑁 + 2⋅𝑆 + 2⋅𝑊 + 2⋅𝐸 + 𝑁𝑊 + 𝑁𝐸 + 𝑆𝑊 + 𝑆𝐸

12
 (2)

Weights reflect the importance of neighbors that are

closer to the center pixel. The equation is simplified as the

distance between the known points and the middle pixel is

the same, which is 1 pixel.

D. Result

Simple Shapes

The samples that are tested using this FXAA algorithm

that fall in the simple shapes category are diagonal lines,

triangles, and stars.

Fig 10. Diagonal Line 100x100 Sample. Source: Author

(made with matplotlib)

Time required for processing is 0,01 seconds.

In this test, the anti-aliasing effects is shown to have

properly blended the edges of the jagged shape. An

observation to be made is that the blurriness from the anti-

aliasing effect is much more present in lower resolution,

but less visible in higher resolution. In this case, Figure 10

has a resolution of 100x100 pixels, while Figure 11 below

has a resolution of 500x500 pixels.

Fig 11. Diagonal Line 500x500 Sample. Source: Author

(made with matplotlib)

Time required for processing: 0,29 seconds.

In the following samples tested, which are the triangle

and star shape, the anti-aliasing effect is also able to blend

the rough edges of the corresponding shape. This proves

that the interpolation implemented works.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Fig 12. Triangle 200x200 Sample. Source: Author (made with

matplotlib)

Time required for processing: 0,05 seconds.

Fig 13. Star 200x200 Sample. Source: Author (made with

matplotlib)

Time required for processing: 0,05 seconds.

Colored Graphics

In this type of sample, the FXAA algorithm’s capabilites

in detecting the low and high contrast pixels are tested. It

is also used to test the capabilities of interpolation blending

for pixels with a variety of RGB and luminance value.

Fig 14. Colored Spiral 200x200 Sample. Source: Author (made

with matplotlib)

Time required for processing: 0,14 seconds.

Fig 15. Colored Radial 200x200 Sample. Source: Author

(made with matplotlib)

Time required for processing: 0,14 seconds.

The experiment shows that the FXAA algorithm is

capable of applying its anti-aliasing effects, even on

curves, odd shapes, and a mix of colors. However,

noticable downsides include a lower quality of anti-

aliasing, especially on round shapes, and lower quality of

contrast detection. An experiment regarding the preferred

threshold used for the algorithm might be a beneficial

addition in the research.

Complex Shapes

Fig 16. Icosphere. Source: Author (made with pyvista)

Time required for processing: 11,70 seconds.

Different from the previous experiments, this sample

tested is aimed to test the capabilities of the FXAA

Algorithm for very complex shapes with a higher

resolution, in this case 1645x819 pixels. A noticable

difference is the time required for processing, significantly

higher than previous tests. This might be due to the amount

of anti-aliasing effect applied on the image, based on the

high contrast filter, topped with the higher resolution size.

In hindsight, the anti-aliasing is able to create a smoother

appearance on the complex sphere. A more noticeable

appearance in the lower-quality of blending might be

noticed if the picture is zoomed, compared to other

interpolation methods, but still is sufficient in creating a

better appearance than the original image.

Another observation found from this experiment is the

obstacle found from applying anti-aliasing to images.

Some interpolation applied minimize the sharpness of

edges, but in cases where these sharpness are actually

desired. The current FXAA method is unable to

differentiate the important of these points and applies the

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

anti-aliasing indiscriminately.

D. CONCLUSION

This experiment was conducted to implement the

bilinear interpolation technique in a simple Fast

Approximate Anti-Aliasing Algorithm. The objective of

the experiment was to apply the interpolation method

properly and evaluate the result, finding insights about its

impact. The simple experiment produced an anti-aliasing

effect that is able to smoothen jagged or aliased effects on

pixels. This is done by applying the bilinear interpolation

on high-contrast pixels to smoothen the transition in pixel

shades. Insights found from the experiment are the FXAA

algorithm’s quick processing time and its moderate-quality

of anti-aliasing effect, most significantly along diagonal

and curved edges. Limitations or downsides that may come

from this algorithm are fixed threshold for edge detection

in some sample images and lower performance rate for

higher complexity images. While the bilinear

implementation succeeded, many improvements can be

made to the experiment, including: testing a variety of

contrast threshold, variation in edge detection, and

experimenting a higher complexity interpolation method

for blending.

VII. ACKNOWLEDGMENT

The author thanks all parties that have directly

contributed to the creation of this paper. The author

especially thanks Mr. Rinaldi Munir as the teacher of the

2024/2025 Linear Algebra and Geometry course, and Mr.

Veriskt Mega Jaya whose suggestions in his research paper

have inspired in the creation of this paper.

REFERENCES

[1] GeeksforGeeks, “What is Raster Graphics?,” geeksforgeeks.com.

https://www.geeksforgeeks.org/raster-graphics/ (Accessed Jan. 1,

2025).

[2] L. Anna, “Anti-Aliasing in Gaming: The Battle for Perfect

Graphics • VOKI Games,” vokigames.com.

https://vokigames.com/anti-aliasing-in-gaming-the-battle-for-

perfect-graphics/ (Accessed Jan. 1, 2025).

[3] J. Flick, “FXAA,” catlikecoding.com.

https://catlikecoding.com/unity/tutorials/advanced-rendering/fxaa/

(Accessed Jan. 1, 2025).

[4] GeeksforGeeks, “Bilinear Interpolation.” What is Bilinear

Interpolation? - GeeksforGeeks (Accessed Jan. 1, 2025).

[5] Cambridge in Colour, “Understanding digital image interpolation,”

geeksforgeeks.com. cambridgeincolour.com.

https://www.cambridgeincolour.com/tutorials/image-

interpolation.htm (Accessed Jan. 1, 2025).

[6] V. Jaya, “Aplikasi Interpolasi Biliner pada Pengolahan Citra

Digital,” Institut Teknologi Bandung, 2014 (Accessed Jan. 1, 2025).

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 27 Desember 2024

Nicholas Andhika Lucas (13523014)

https://www.geeksforgeeks.org/raster-graphics/
https://vokigames.com/anti-aliasing-in-gaming-the-battle-for-perfect-graphics/
https://vokigames.com/anti-aliasing-in-gaming-the-battle-for-perfect-graphics/
https://catlikecoding.com/unity/tutorials/advanced-rendering/fxaa/
https://www.geeksforgeeks.org/what-is-bilinear-interpolation/
https://www.geeksforgeeks.org/what-is-bilinear-interpolation/
https://www.cambridgeincolour.com/tutorials/image-interpolation.htm
https://www.cambridgeincolour.com/tutorials/image-interpolation.htm

